/v

AARHUS UNIVERSITET

Microservices and DevOps

Scalable Microservices

Splitting the Monolith aka.
Application Modernization

Henrik Baerbak Christensen

eV Introduction

AARHUS UNIVERSITET

« Making these slides took some effort to structure...
— Newman talks a bit here and there ...

« Using Newman §5 + GOTO stuff, and Richardson §13

O'REILLY"

Building
Microservices

DESGHING)
e %'i e
. N

CS@AU Henrik Baerbak Christensen 2

VeV Context

AARHUS UNIVERSITET

* OK, so we have this monolith
— that is busting at the seams, or
— the sensible starting point for our MS architecture

« We want to start the process of splitting it into sensible
microservices.
— Entaills:
— What process do we use to split the monolith

— What boundaries in the monolith shall we split along
* Or do we need to make them first?

— What tactics/patterns to use for each ‘extraction’

VeV Context

AARHUS UNIVERSITET

« We want to start the process of splitting it into sensible
microservices.

— Splitting Process
— Splitting Boundaries: Seams

— Extraction Tactics

CS@AU Henrik Baerbak Christensen 4

/v

AARHUS UNIVERSITET

Splitting Process

Based primarily on Richardson

/v Appl. Modernization

AARHUS UNIVERSITET
e Source:

— Chris Richardson

CS@AU Henrik Beerbak Christensen 6

/v

AARHUS UNIVERSITET

Do not do a

big bang
rewrite!

AARHUS UNIVERSITET

« Strangler Application Pattern:

— Modernize an application by
developing a new (strangler)
application around the legacy
application

* Typically takes months/years

Y Strangler Pattern

CS@AU Henrik Baerbak Christensen 8

Y Strangling the Monolith

AARHUS UNIVERSITET
° From RlChardson The strangler application

grows larger over time.

i |
| |
| |
| |
: | Service | | Service | :
: | Service | | Service | :
: | Service | | Service | :
|
[Service | [Servies |
: | Service | | Senice | :
: | Senvice | | Service | | Service | | Service | :
: Service | | Service | | Service | | | | Service | | Service | :
L. - ______ _ - _ _ _ _-_ - _ - -—__—_-—_--—"——{QXWtQMMmWe--—_-— —M Y |
Time >
|:| Monolith
. Monaolith
Monolith il pionel

L
|
|
AN
The monolith shrinks over time.

CS@AU Henrik Baerbak Christensen 9

/v Testing Is Central...

AARHUS UNIVERSITET

CS@AU Henrik Beerbak Christensen 10

AARHUS UNIVERSITET
« Testing is central, because...

VeV Software Vise

Software Vise: Automated tests around our software unit, fixating the

behavior, and early detect any behavioral changes.

... it creates confidence that we do not introduce defects
while refactoring the architecture...

CS@AU Henrik Beerbak Christensen 11

/v Strangler Appl

AARHUS UNIVERSITET

* Benefits
— Demonstrate value early and often

— Minimize changes to the monolith

— Evolve the Tech Deployment Infrastructure as you go
» Aka: “You do not need it all now'...

— And you learn as you go!
* How to containerize, deploy, release, test, ...

/v Refactoring Strategies

AARHUS UNIVERSITET
* Proposed strategies for strangling:

— Implement new features as services
— Separate presentation tier from backend tier

— Break monolith by extracting business capabilities into services
« That is: The real strangling

eV New Features as Services

AARHUS UNIVERSITET

« Law of Holes: If you find yourself in a hole, stop digging
— If you horse is dead, then dismount

 New features of the Monolith that is ‘ball of mud’ should
be developed as microservices
— Get experience with the MS paradigm
— Stops the monolith growth

— Does not invalidate current monolith behavior
« Lessening the risk

/v

split

CS@AU

Presentation Tier Splitting

Monolith containing Smaller, independently
deployable presentation

presentation logic and
backend business logic

)
Browser

HTML pages

/ '
|" Web
application

B

Business logic

Database
adapter

!

MySQL

Figure 13.3 Splitting the frontend from the backend enables each to be deployed independently. It also exposes

an API for services to invoke.

Smaller, independently

AARHUS UNIVERSITET
« Often the Presentation tier is a feasible boundary to do a

deployable backend
monolith

logic monolith
\
.| .'
| Browser /
: /
f | HTML pages
|
\ Web (
\ app \
u
REST
[spit_4 REST AP
client /
e Biness logic
||ll.’
/
)
)
I
| Database
/ adapter
/ :
MySaL

An API that is callable
by any future services

15

/v Extract Business Capabilities

AARHUS UNIVERSITET

« Extract one business capabillity at a time
— Applying the strangler pattern

« Entails
— Splitting the domain model

— Refactoring the database

... Which leads to the next headline...

/v

AARHUS UNIVERSITET

Splitting Boundaries: Seams

CS@AU Henrik Baerbak Christensen

17

/v Seams (?)

AARHUS UNIVERSITET

 Feather himself:

Seam |

A seam is a place where you can alter behavior in your program without editing in that place.

« Merriam-Webster dictionary

Definition of seam (Entry 1 of 2)

1 a :the joining of two pieces (as of cloth or leather) by sewing usually near the
edge

b :the stitching used in such a joining

2 :the space between adjacent planks or strakes of a ship

CS@AU Henrik Beerbak Christensen 18

VeV Seamless Confusion

AARHUS UNIVERSITET

« Seams is a good analogy, but in my mind, authors each
have their own understanding of what it means

— Two independent ‘things’ are joined by a seam, making them form
a bigger and more relevant ‘whole.’

— But Feathers/Newman define the seam to be the ‘things’ ?7?

« Anyway — software architecture is about cutting the whole
into ‘the right’ pieces (creating the seams the right
places) and use a suitable technigue for joining them.

— Joining techniques:
* API calls (in-process),

« API calls (out-of-process)
» Using a zillion different techniques: MQ, shared variable, methods,...

/v Better Terminology

AARHUS UNIVERSITET

« Component — Connector Viewpoint
3.2.3 Elements and Relations

The C&C viewpoint has one element type and one relation type:

Component: A functional unit that has a well-defined behavioural
responsibility.

Connector: A communication relation between components that de-
fines how control and data i1s exchanged.

The 3+1 Approach to Software Architecture
Description Using UML

 Component (Newman seam)

Henrik Beerbak Christensen, Aino Corry, and Klaus Marius Hansen

Department

— A microservice, a process e

« Connector (what | would call a seam...)
— The communication: MQ, REST, ...

CS@AU Henrik Baerbak Christensen 20

/v Monolith and Coupling

AARHUS UNIVERSITET

« Coupling and cohesion have non-code aspects: The
deployment aspect

— It may be that my code change is highly cohesive and decoupled
from the rest of the codebase, but...

— ... if have a monolith, then | have to redeploy the full monolith
due to that single code change

— High coupling in the deployment viewpoint/aspect ®

CS@AU Henrik Beerbak Christensen 21

VeV BC as Seam

AARHUS UNIVERSITET

 Newman argue (or postulate?) that bounded contexts
work well as seams

* Process
— Break apart as modules first kind of ‘monoalith first’ pattern
— ‘Microservicize’ modules next...

* |n which order? Consider
— Pace of change: Pick the one which changes fast
— Team structure: Pick the one whose team is out-of-house
— Security: Pick the one that has stricter security concerns
— Technology: Pick the one that has specialized tech requirements

/v

AARHUS UNIVERSITET

Extraction Tactics

Newman focus: The Database

eV The Issue

AARHUS UNIVERSITET
* Breaking a component/module into two microservices
means handling those references that cross the
connector

« Many forms of coupling
— Object method call
— Shared data (the database!)

Extracted service

|
¥

FTGO monaolith Delivery Service FTGO menolith
- 2 : ? :
«Entitys «<Entity» -‘ «Entitys ’ <Entitys
Order Restaurant Order * Restaurant

|Ir.

kY
Object reference that spans
service boundaries

CS@AU Henrik Baerbak Christensen 24

eV The Database

AARHUS UNIVERSITET

* Classic Three-Tier systems all share the same database
— The breeding ground for a ‘big ball of mud’/Spaghetti structure ®

* Problem # 1 = e (=
— Understanding the table structure E N\ o
« Create an ER diagram © _ (Aecommt | " ﬁ_l G| Regon |
— Can be a major undertaking by “j o
itself... =

« Foreign key relations

— Tools may help...

CS@AU Henrik Baerbak Christensen 25

/v

AARHUS UNIVERSITET
« EXx: Finance

— Instead of ‘400 copies of sku-185, made 1300%’ we want
— ‘400 copies of “Matas/hand sanitizer”, made 1300%’

— Require lookup in ‘catalog’ for key ‘sku-185’ to get item name...
« Aka ‘join tables’

* However, splitting into two services now...

Foreign Keys

MusicCorpMono

JLf

Catalog Finance

4 - - T

-
A = A

Line items Ledger

Figure 5-2. Foreign key relationship

CS@AU Henrik Baerbak Christensen 26

Y Foreign Keys

AARHUS UNIVERSITET

« Two step breaking (if part of a ‘strangling effort’)
— Step 1: Replace ‘join’ at database level with API call
« String itemName = catalog.getNameOf(“sku-185");

— Step 2: Replace API call with out-of-service calls

« Alas, make ‘catalog’ a connector implementation
— Replace catalogServant with catalogProxy, OR
— Replace catalogServant with catalogRESTConnector ©

MusicCorp system

Catalog Service M- ~~~~——~~=—1 Finance service §

/sku/185

Line items Ledger

CS@AU l'igure 5-3. Post removal of the foreign key relationship

27

Y Compare

AARHUS UNIVERSITET
* Ring a bell?

— This is the NoSQL paradigm. No support for joins in the
database, replace it with client side (manual) joins

 The trade-off discussion is the same...
— One server call is now two server calls

— Constraint checking (foreign key relations) are now the duty of
the clients

eV Transactions

AARHUS UNIVERSITET

« What about transactions?
— Commit and rollback / all-or-nothing are strong concepts

« We are getting outside the scope of this course
— | know rather little of the subject ©

« General rule

— Either you live without transactions
« Eventual consistency, correctional events, SAGA

Pattern: Saga
Maintain data consistency across services using a sequence of local transactions
that are coordinated using asynchronous messaging. See http://microservices.io/

— Or you make bigger services patms/cata/saga. i

« If transaction is vital, and cross
boundary of service A and B, then merge them into a single service.

CS@AU Henrik Baerbak Christensen 29

Vav Shared Static Data

AARHUS UNIVERSITET
 Example: Country code table in shared DB

e Solutions:
— Duplicate the table in all distributed data management layers
« Consistency issue — duplicated data ®

— Data as Code — read a property file instead of DB access

» Consistency issue — but easier than DB changes
— Easier to push a new property file into a set of code bases

— Own service — REST call to get data
« Often overkill, but consistency now in place

VeV Shared Mutable Data

AARHUS UNIVERSITET
« Two modules both write/read from shared data

MusicCorp

Warehouse | Finance

Customer record

Figure 5-5. Accessing customer data: are we missing something?

« Often because the modeling has missed a BC
— Solution: Make it © | |

MusicCorp system

Finance service | Warehouse service

R
|
|
‘
|

Customer service

Figure 5-6. Recognizing the bounded context of the customer

CS@AU Henrik Baerbak Christensen 31

/v Shared Table

AARHUS UNIVERSITET
 Example: Catalog and Warehouse read/write different
columns in a shared table

(atalog ; Warehouse |

— Accidental architectural flaw?

e Solution: Break the table

Figure 5-7. Tables being shared between different contexts

— Nygard talks more in-detail about
that...

 Shims, trickle-then-batch, etc.

CS@AU Henrik Baerbak Christensen 32

/v NOSQL?

AARHUS UNIVERSITET
 How does this relate to NoSQL?
Well — a lot, basically we have many of the same issues
The Foreign Key issue Is non-existent
— As we have none of them in a ‘by-the-book’ NoSQL usage

Potentially we have a worse issue

— Document paradigm — splitting out embedded documents!
« {room: “You are in...”, position:"(0,0,0)", messages: [{...}.{...}]}
* Moving messages to other service is a non-trivial exercise!

The Shared Data/Table issue Is the same

/v

AARHUS UNIVERSITET

Extraction Tactics

But what about API calls?

/v

AARHUS UNIVERSITET

« What about simple API calls using references?
— myRestaurant.pIaceOrderi(tabIelBOrder)'

FTGO monolith

«Entitys
Order

|
\
|

¥

Extracted service

* In-process object references makes no sense across
process boundaries...

CS@AU

Delivery Service

«Entitys

?

FTGO monaolith

_ | «Entitys

Order

Illll

*

Restaurant

b
Object reference that spans
service boundaries

Henrik Baerbak Christensen

Newman Forgot?

35

VeV FRDS Broker

AARHUS UNIVERSITET
« The very same problem is discussed in my FRDS book

regarding the Broker pattern

— Basic idea: Replace object reference with a unique ID, which
the object owner service can use to access the underlying
object, using a name service.

— Client side, we create a proxy, that
just stores this ID, and then call
servant object using this ID .
« Server translate id to servant object

Trans! ferring Server Created Objects - Client side

eV MicroService Context

AARHUS UNIVERSITET

* Microservices have to do the same:
— Replace object references with unique IDs (“primary keys”)

Extracted service
FTGO monalith Delivery Service FTGO monolith

«Entitys «Entitys) «Entitys ?
Order Restaurant Order 2

Object reference that spans Delivery Service FTGO monolith Delivery Service FTGO monolith

service boundaries
«Entitys ? «Entitys (— <Entitys <Entitys
Order [| Restaurant Order Restaurant
restaurantId
Object reference that spans)
service boundaries | Replace with primary key. |

CS@AU Henrik Beerbak Christensen 37

/v

AARHUS UNIVERSITET

Sidebar: Aggregates

CS@AU

#value object=
DeliveryInfo

#aggregate rootw
Oorder

#value object=
PaymentInfo

| Order aggregate

Y

«value cbjects
OrderLineItem

quantity

«£aggregate roots «value cbjects
Consumar DeliveryInfo
\ =value cobjects
PaymentInfo
Consumer aggregate

«aggregate rootw
Restaurant

Restaurant aggregate

Figure 5.5 Structuring a domain model as a set of aggregates makes the boundaries explicit.

Henrik Baerbak Christensen

38

/v

AARHUS UNIVERSITET
* In REST

REST Context

— A Create is a POST message which must return a Location

HTTP/1.1 281 Created
Date: Mon, @7 May 2018 12:16:51 GMT
Content Tyne _aoplicaiion/icon

1. http://telemed. baesrbak com/bloodpressure/251248-1234/1d73564827

patientId: "251248-1234",
systolic: 144.09,
diastolic: 87.0,

time: "20180515T094804Z"

— So URI’s path-segment is an obvious unique ID candidate

CS@AU

Henrik Baerbak Christensen

39

/v

AARHUS UNIVERSITET

Branch By Abstraction

If the seams are not clear
(From a Newman’s GOTO Workshop)

eV Newman’s New Book

AARHUS UNIVERSITET
« Slides are from before Newman published his book

O'REILLY
« Essential set of patterns, if you Monolith to
are in that situation... Microservices

Som Nowmon

CS@AU Henrik Baerbak Christensen 41

/v Got02019 Workshop

AARHUS UNIVERSITET
« One very concrete pattern
— Monolith Splitting Pattern: Branch By Abstraction
— Context: Invoice and Order
T [each call their own set of
— ‘notification methods’

@zamnsuman | O @zamnswman
o e e st g e et

1. Create abstraction point 1. Create abstraction point

2. Start work on new service
implementation
\

AU CS Henrik Baerbak Christensen 42

\ 4
AARHUS UNIVERSITET

BRANCH BY ABSTRACTION

Notifications

Dopyright Sam Newman & Agacolates, 2018

BRANCH BY ABSTRACTION
1. Create abstraction point

2. Start work on new service
implementation

@oamnewman | Copyrignt sam Mewman & Assooiatse, 2018
o b e e

BBA

1. Create abstraction point

2. Start work on new service
implementation

Nummalun\‘
e -
Service

@ramnewmal
o8 ek

BRANCH BY ABSTRACTION

Notifications

alling |
lermentation

AU CS

BRANCH BY ABSTRACTION
1. Create abstraction point

2. Start work on new service
implementation

3. Switch over

Notifications

Henrik Baerbak Christensen

1. Create abstraction point

2. Start work on new service
implementation

3. Switch over

Notification
S £
Service

43

eV, BottomLine

AARHUS UNIVERSITET
 We need to refactor our notification services so you

— 3) Encapsulate what varies Notification
— 1) Program to an interface All that use Notifi...
— 2) Favor object composition

— And then let dependency injection determine if you use the old
legacy code or use the new p-service

/v

AARHUS UNIVERSITET

Extraction Tactics

A Testability tactic
for major rework

/v Migration Pattern

AARHUS UNIVERSITET
« Live Equivalence Testing
LIVE EQUIVALENCE TESTING LIVE EQUIVALENCE TESTING Uber'S Aa rhus unlt dld

this some years ago...

@eamnewman | Oopyright 2018 Bam Newman & Assoolates Lid

CANARY RELEASING

Call both implementations &
compare

Divert proportion of traffic to test new
implementation (canary release)

CRE-life-lassons.html

AU CS Henrik Baerbak Christensen 46

/v

AARHUS UNIVERSITET

Reporting

Cross Service Data

/v Reporting

AARHUS UNIVERSITET

* Reporting: Group together data from across multiple
parts of our organization to generate useful output

— Typically a managerial perspective

» Purchase patterns, browsing patterns, optimization, sales
distribution, ...

« Monolith / Three tier case is ‘easy case’
— Select * from * where({85 lines here})

 But what now?

/v Reporting
AARHUS UNIVERSITET
 Retrieval via Service Calls

— Pull the data by pulling from each service

« Often require a special ‘reporting API’, to avoid overhead of a zillion
GET requests, interfering with normal processing

 Data Pumps

— Push data to reporting system

« HTTP calls, or (better) standalone programs with direct DB access
— (Now we have a shared database, relying on the schemal)

 Event Data Pump

— Subscribe to ‘state change events’
« We will return to the ‘event sourcing’ tactics for databases later

* And — Monitoring... Stay tuned...

/v

AARHUS UNIVERSITET

Code Level Legacy Refactoring

Just mentioning ...

- Incremental Testability

AARHUS UNIVERSITET

« An incremental refactoring process to introduce testability

4 Part [I: Changing Software

[J P ri m ary SO u rce Chapter 6: | Don't Have Much Time and | Have to Change It

Chapter 7: It Takes Forever to Make a Change
_ Martin C Feathers Chapter 8: How Do | Add a Feature?
- Chapter 9: | Can't Get This Class into a Test Harness
Chapter 10: | Can't Run This Methed in a Test Harness
Chapter 11: | Need to Make a Change. What Methods Should | Test?
Chapter 12: | Need to Make Many Changes in One Area. Do | Have to Ere
Chapter 13: | Meed to Make a Change, but | Don't Know What Tests to W
Chapter 14: Dependencies on Libraries Are Killing Me
Chapter 15: My Application Is All API Calls
Chapter 16: | Don’t Understand the Code Well Encugh to Change It
Chapter 17: My Application Has Mo Structure
Chapter 18: My Test Code Is in the Way

WO R K I N G Chapter 19: My Project |s Not Object Oriented. How Do | Make Safe Chal
E F F E C T I V E LY Chapter 20: This Class Is Too Big and | Don't Want It to Get Any Bigger
WITH Chapter 21: I'm Changing the Same Code All Over the Place
LEGACY CODE Our goal tOday' Chapter 22: | Need to Change a Monster Method and | Can't Write Tests
A feW key poi nts l Chapter 23: How Do | Know That I'm Mot Ereaking Anything?

Michael C. Feathers Chapter 24: We Feel Overwhelmed. It lsn't Going to Get Any Better

4 Part [ll: Dependency-Breaking Technigues
Chapter 25: Dependency-Breaking Technigques

CS@AU Henrik Baerbak Christensen 51

AARHUS UNIVERSITET

« Approaches

— Edit and Pray ®

» Carefully plan changes, ensure you under-
stand the code, make changes, run system
and poke around to make you did not break anything...

— Cover and Modify ©
» |dea: Make a safety net that cloaks our code of interest and ensure
no bad changes leak out into the surrounding code.
— Covering = Covering with Automated Tests !
— Tests as tools to identify behavioral changes

VeV Software Vise

Software Vise: Automated tests around our software unit, fixating the

behavior, and early detect any behavioral changes.

CS@AU Henrik Baerbak Christensen 52

/v Summary

AARHUS UNIVERSITET

« Avoid big-bang rewrites, have strong testing (the ‘vise’),
and do it one small step at a time

— The strangler pattern

— Lots of extraction tactics
» For the database
« For the components and connectors

