
Microservices and DevOps

Scalable Microservices
Splitting the Monolith aka.

Application Modernization

Henrik Bærbak Christensen

Introduction

• Making these slides took some effort to structure…

– Newman talks a bit here and there …

• Using Newman §5 + GOTO stuff, and Richardson §13

CS@AU Henrik Bærbak Christensen 2

Context

• OK, so we have this monolith

– that is busting at the seams, or

– the sensible starting point for our MS architecture

• We want to start the process of splitting it into sensible

microservices.

– Entails:

– What process do we use to split the monolith

– What boundaries in the monolith shall we split along

• Or do we need to make them first?

– What tactics/patterns to use for each ‘extraction’

CS@AU Henrik Bærbak Christensen 3

Context

• We want to start the process of splitting it into sensible

microservices.

– Splitting Process

– Splitting Boundaries: Seams

– Extraction Tactics

CS@AU Henrik Bærbak Christensen 4

Splitting Process

Based primarily on Richardson

Appl. Modernization

• Source:

– Chris Richardson

• Application Modernization: The

process of converting a legacy

application to one having a modern

architecture and technology stack.

CS@AU Henrik Bærbak Christensen 6

Rule #1

CS@AU Henrik Bærbak Christensen 7

Do not do a
big bang
rewrite!

Strangler Pattern

CS@AU Henrik Bærbak Christensen 8

• Strangler Application Pattern:

– Modernize an application by

developing a new (strangler)

application around the legacy

application

• Typically takes months/years

Strangling the Monolith

• From Richardson

CS@AU Henrik Bærbak Christensen 9

Testing is Central…

• ”The only thing you can’t live without, is a deployment

pipeline that performs automated testing.”
[Richardson, p 433]

CS@AU Henrik Bærbak Christensen 10

Software Vise

• Testing is central, because…

• … it creates confidence that we do not introduce defects

while refactoring the architecture…

CS@AU Henrik Bærbak Christensen 11

Software Vise: Automated tests around our software unit, fixating the
behavior, and early detect any behavioral changes.

Strangler Appl

• Benefits

– Demonstrate value early and often

– Minimize changes to the monolith

– Evolve the Tech Deployment Infrastructure as you go

• Aka: ‘You do not need it all now’…

– And you learn as you go!

• How to containerize, deploy, release, test, …

CS@AU Henrik Bærbak Christensen 12

Refactoring Strategies

• Proposed strategies for strangling:

– Implement new features as services

– Separate presentation tier from backend tier

– Break monolith by extracting business capabilities into services

• That is: The real strangling

CS@AU Henrik Bærbak Christensen 13

New Features as Services

• Law of Holes: If you find yourself in a hole, stop digging

– If you horse is dead, then dismount

• New features of the Monolith that is ‘ball of mud’ should

be developed as microservices

– Get experience with the MS paradigm

– Stops the monolith growth

– Does not invalidate current monolith behavior

• Lessening the risk

CS@AU Henrik Bærbak Christensen 14

Presentation Tier Splitting

• Often the Presentation tier is a feasible boundary to do a

split

CS@AU Henrik Bærbak Christensen 15

Extract Business Capabilities

• Extract one business capability at a time

– Applying the strangler pattern

• Entails

– Splitting the domain model

– Refactoring the database

• … Which leads to the next headline…

CS@AU Henrik Bærbak Christensen 16

Splitting Boundaries: Seams

CS@AU Henrik Bærbak Christensen 17

Seams (?)

• Seam: Portion of code that can be changed without

impacting the rest of the code (Newman)

• Feather himself:

• Merriam-Webster dictionary

CS@AU Henrik Bærbak Christensen 18

Seamless Confusion

• Seams is a good analogy, but in my mind, authors each

have their own understanding of what it means

– Two independent ‘things’ are joined by a seam, making them form

a bigger and more relevant ‘whole.’

– But Feathers/Newman define the seam to be the ‘things’ ???

• Anyway – software architecture is about cutting the whole

into ‘the right’ pieces (creating the seams the right

places) and use a suitable technique for joining them.

– Joining techniques:

• API calls (in-process),

• API calls (out-of-process)

• Using a zillion different techniques: MQ, shared variable, methods,…
CS@AU Henrik Bærbak Christensen 19

Better Terminology

• Component – Connector Viewpoint

• Component (Newman seam)

– A microservice, a process

• Connector (what I would call a seam…)

– The communication: MQ, REST, …

CS@AU Henrik Bærbak Christensen 20

Monolith and Coupling

• Coupling and cohesion have non-code aspects: The

deployment aspect

– It may be that my code change is highly cohesive and decoupled

from the rest of the codebase, but…

– … if I have a monolith, then I have to redeploy the full monolith

due to that single code change

– High coupling in the deployment viewpoint/aspect 

• Microservices enable decoupling in the deployment

space as well as in the code space

CS@AU Henrik Bærbak Christensen 21

BC as Seam

• Newman argue (or postulate?) that bounded contexts

work well as seams

• Process

– Break apart as modules first kind of ‘monolith first’ pattern

– ‘Microservicize’ modules next…

• In which order? Consider

– Pace of change: Pick the one which changes fast

– Team structure: Pick the one whose team is out-of-house

– Security: Pick the one that has stricter security concerns

– Technology: Pick the one that has specialized tech requirements

CS@AU Henrik Bærbak Christensen 22

Extraction Tactics

Newman focus: The Database

The Issue

• Breaking a component/module into two microservices

means handling those references that cross the

connector

• Many forms of coupling

– Object method call

– Shared data (the database!)

– …

CS@AU Henrik Bærbak Christensen 24

The Database

• Classic Three-Tier systems all share the same database

– The breeding ground for a ‘big ball of mud’/Spaghetti structure 

• Problem # 1

– Understanding the table structure

• Create an ER diagram ☺

– Can be a major undertaking by

itself…

• Foreign key relations

– Tools may help…

CS@AU Henrik Bærbak Christensen 25

Foreign Keys

• Ex: Finance

– Instead of ‘400 copies of sku-185, made 1300$’ we want

– ‘400 copies of “Matas/hand sanitizer”, made 1300$’

– Require lookup in ‘catalog’ for key ‘sku-185’ to get item name…

• Aka ‘join tables’

• However, splitting into two services now…

CS@AU Henrik Bærbak Christensen 26

Foreign Keys

• Two step breaking (if part of a ‘strangling effort’)

– Step 1: Replace ‘join’ at database level with API call

• String itemName = catalog.getNameOf(“sku-185”);

– Step 2: Replace API call with out-of-service calls

• Alas, make ‘catalog’ a connector implementation

– Replace catalogServant with catalogProxy, OR

– Replace catalogServant with catalogRESTConnector ☺

CS@AU Henrik Bærbak Christensen 27

Compare

• Ring a bell?

– This is the NoSQL paradigm. No support for joins in the

database, replace it with client side (manual) joins

• The trade-off discussion is the same…

– One server call is now two server calls

– Constraint checking (foreign key relations) are now the duty of

the clients

CS@AU Henrik Bærbak Christensen 28

Transactions

• What about transactions?

– Commit and rollback / all-or-nothing are strong concepts

• We are getting outside the scope of this course

– I know rather little of the subject ☺

• General rule

– Either you live without transactions

• Eventual consistency, correctional events, SAGA

– Or you make bigger services

• If transaction is vital, and cross

boundary of service A and B, then merge them into a single service.

CS@AU Henrik Bærbak Christensen 29

Shared Static Data

• Example: Country code table in shared DB

• Solutions:

– Duplicate the table in all distributed data management layers

• Consistency issue – duplicated data 

– Data as Code – read a property file instead of DB access

• Consistency issue – but easier than DB changes

– Easier to push a new property file into a set of code bases

– Own service – REST call to get data

• Often overkill, but consistency now in place

CS@AU Henrik Bærbak Christensen 30

Shared Mutable Data

• Two modules both write/read from shared data

• Often because the modeling has missed a BC

– Solution: Make it ☺

CS@AU Henrik Bærbak Christensen 31

Shared Table

• Example: Catalog and Warehouse read/write different

columns in a shared table

– Accidental architectural flaw?

• Solution: Break the table

– Nygard talks more in-detail about

that…

• Shims, trickle-then-batch, etc.

CS@AU Henrik Bærbak Christensen 32

NoSQL?

• How does this relate to NoSQL?

• Well – a lot, basically we have many of the same issues

• The Foreign Key issue is non-existent

– As we have none of them in a ‘by-the-book’ NoSQL usage

• Potentially we have a worse issue

– Document paradigm – splitting out embedded documents!

• { room: “You are in…”, position:”(0,0,0)”, messages: [{…},{…}]}

• Moving messages to other service is a non-trivial exercise!

• The Shared Data/Table issue is the same

CS@AU Henrik Bærbak Christensen 33

Extraction Tactics

But what about API calls?

Newman Forgot?

• What about simple API calls using references?

– myRestaurant.placeOrder(table13Order);

• In-process object references makes no sense across

process boundaries…

CS@AU Henrik Bærbak Christensen 35

FRDS Broker

• The very same problem is discussed in my FRDS book

regarding the Broker pattern

– Basic idea: Replace object reference with a unique ID, which

the object owner service can use to access the underlying

object, using a name service.

– Client side, we create a proxy, that

just stores this ID, and then call

servant object using this ID

• Server translate id to servant object

CS@AU Henrik Bærbak Christensen 36

MicroService Context

• Microservices have to do the same:

– Replace object references with unique IDs (“primary keys”)

• Aggregates reference each other using primary keys

rather than object references

CS@AU Henrik Bærbak Christensen 37

Sidebar: Aggregates

• Aggregate: Collection of domain objects, that are treated

as a unit. A domain model is a collection of aggregates.

CS@AU Henrik Bærbak Christensen 38

REST Context

• In REST

– A Create is a POST message which must return a Location

– So URI’s path-segment is an obvious unique ID candidate

CS@AU Henrik Bærbak Christensen 39

Branch By Abstraction

If the seams are not clear

(From a Newman’s GOTO Workshop)

Newman’s New Book

• Slides are from before Newman published his book

• Essential set of patterns, if you

are in that situation…

CS@AU Henrik Bærbak Christensen 41

Goto2019 Workshop

• One very concrete pattern

– Monolith Splitting Pattern: Branch By Abstraction

AU CS Henrik Bærbak Christensen 42

Context: Invoice and Order
each call their own set of

‘notification methods’

BBA

AU CS Henrik Bærbak Christensen 43

BottomLine

• We need to refactor our notification services so you

– 3) Encapsulate what varies Notification

– 1) Program to an interface All that use Notifi…

– 2) Favor object composition

– And then let dependency injection determine if you use the old

legacy code or use the new µ-service

AU CS Henrik Bærbak Christensen 44

Extraction Tactics

A Testability tactic

for major rework

Migration Pattern

• Live Equivalence Testing

AU CS Henrik Bærbak Christensen 46

Uber’s Aarhus unit did
this some years ago…

Reporting

Cross Service Data

Reporting

• Reporting: Group together data from across multiple

parts of our organization to generate useful output

– Typically a managerial perspective

• Purchase patterns, browsing patterns, optimization, sales

distribution, …

• Monolith / Three tier case is ‘easy case’

– Select * from * where({85 lines here})

• But what now?

CS@AU Henrik Bærbak Christensen 48

Reporting

• Retrieval via Service Calls

– Pull the data by pulling from each service

• Often require a special ‘reporting API’, to avoid overhead of a zillion

GET requests, interfering with normal processing

• Data Pumps

– Push data to reporting system

• HTTP calls, or (better) standalone programs with direct DB access

– (Now we have a shared database, relying on the schema!)

• Event Data Pump

– Subscribe to ‘state change events’

• We will return to the ‘event sourcing’ tactics for databases later

• And – Monitoring… Stay tuned…
CS@AU Henrik Bærbak Christensen 49

Code Level Legacy Refactoring

Just mentioning …

Incremental Testability

• An incremental refactoring process to introduce testability

• Primary Source

– Martin C. Feathers

CS@AU Henrik Bærbak Christensen 51

Our goal today:
A few key points!

Software Vise

• Approaches

– Edit and Pray 

• Carefully plan changes, ensure you under-

stand the code, make changes, run system

and poke around to make you did not break anything…

– Cover and Modify ☺

• Idea: Make a safety net that cloaks our code of interest and ensure

no bad changes leak out into the surrounding code.

– Covering = Covering with Automated Tests !

– Tests as tools to identify behavioral changes

CS@AU Henrik Bærbak Christensen 52

Software Vise: Automated tests around our software unit, fixating the
behavior, and early detect any behavioral changes.

Summary

• Avoid big-bang rewrites, have strong testing (the ‘vise’),

and do it one small step at a time

– The strangler pattern

– Lots of extraction tactics

• For the database

• For the components and connectors

CS@AU Henrik Bærbak Christensen 53

